A SHORTEST TREE ALGORITHM FOR OPTIMAL ASSIGNMENTS

ACROSS SPACE AND TIME IN A DISTRIBUTED PROCESSOR SYSTEM

Shahid H. Bokhari

Report No. 81-6
January 27, 1981

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia

Operated by the

UNIVERSITIES SPACE SR RESEARCH ASSUCIATION

(NASA-CR-185786) A SHORTEST TREE

ALGORTTHM -
FOR OPTIMAL ASSIGNMENTS ACROSS SPACE AND nasTTL 34
TIME IN A DISTRIBUTED PROCESSOR SYSTEM

(ICASE 2
) %6 p Unclas

00/61 0224385

A SHORTEST TREE ALGORITHM FOR OPTIMAL ASSIGNMENTS

ACROSS SPACE AND TIME IN A DISTRIBUTED PROCESSOR SYSTEM

Shahid H. Bokhari

Univensity of Engineenring and Technology
Lahone, Pakistan

ABSTRACT

The problem of optimally assigning the modules of a pro-
gram over the processors of an inhomogeneous distributed pro-
cessor system is analyzed. The objective is to assign modules,
wherever possible, to the processors on which they execute most
rapidly while taking into account the overhead of interprocessor
communication. Factors contributing to the cost of an assign-
ment are (1) the amount of computation required by each module,
(2) the amount of data transmitted between each pair of modules,
(3) the speed of each processor and (4) the speed of the communi-
cation link between each pair of processors.

A shortest tree algorithm is described that minimizes the
sum of execution and. communication costs for arbitrarily connec-
ted distributed systems with arbitrary numbers of processors,
provided the interconnection pattern of the modules forms a tree.
The algorithm uses a dynamic programming approach to solve the
problem for m modules and n processors in 0(m2n2) time.

This work was supported by NSF Grant MCS-76-11650 while the
author was at the Department of Electrical and Computer Engineering,
University of Massachusetts, Amherst, and by NASA Contact No.
NAS1-14101 while the author was in residence at the Institute
for Computer Applications in Science and Engineering (ICASE),

NASA Langley Research Center, Hampton, VA 23665.

1. Introduction

Over the past few years interest in distributed
processing has led to the identification of several challenging
problems. One of these is the problem of optimally assigning the
modules of a modular program over the processors of an inhomogeneous
distributed processor system. Factors contributing to the cost
of an assignment are (1) the amount of computation required by each
module, (2) the amount of data transmitted between éach pair of
modules, (3) the speed of each processor and (4) the speed of the

communication link between each pair of processors.

Research by Stone (77a), (78) and Bokhari (79), (80)
has shown how the optimal assignment may be found efficiently for the
case of dual processor systems using a network flow algorithm.
While an extension to three processors was developed by Stone (77b), .
algorithms for four or more processors have not been found.
Gursky (78) has shown that the problem of finding the optimal

assignment for four or more processors is NP-complete.

In section 2 of this paper we show that if the
intermodule communication pattern of the program is constrained to
be a tree, then the problem may be solved for an arbitrary number
of procesgors using an efficient dynamic programming approach.
Programs that have a tree-like structure form an important class
and include programs written as a hierarchy of subroutines.

Turner (80) has discussed how a tree-like structure is best suited

for large modular programs.

!
The algorithm takes into account the interconnection
structure cf the distributed system (i.e. the speeds of links

between pairs of processors) a consideration that does not arise

in the dual processor case.

The algorithm minimizes the sum of module execution
and interprocessor communication costs. The two costs must be
expressed in the same units which could be time or dollars or
other resource units. If the costs are expressed in dollars then
the algorithm will minimize the total financial cost of executing
the program. If expressed in terms of module execution and
interprocessor communication time it will minimize £he total
execution time assuming serial execution of the program. That
is, even though there are several modules and processors, only
one module is active on one processor at a time. This is the case
in many distributed processing application including the distributed
processor at Brown University (Michel & van Dam,76), (Van Dam
et al.,74) which has served as a model for prior research by

Stone and Bokhari.

In Section 3 of this paper we show how the dynamic
programming approach may also be used to optimally schedule a number
of tasks whose precedence relationship forms a tree over a set
of processors whose costs of execution énd intercommunication
vary with time. The motivation in this case is to distribute
the tasks over the processors, delaying their execution wherever
deadlines permit so as to take advantage of periods of light

loading of specific processors and communication links.

In this case the algorithm may be used to minimize
the sum of execution costs (processor and time dependent),
communication costs (dependent on the characteristics of specific
links and on time) and the penalties for not meeting deadlines

(if any).

2. Distributing Across Space

In this section we examine the problem of
optimally distributing a modular program over the processors of
a distributed processing system. We call this the problem of

distributing across space (i.e. the space of processors).

2.1 Formulation of the problem

Our distributed processor system is assumed to be
made up of an arbitrary number n of dissimilar processors. These
processors are assumed to be interconnected in an arbitary fashion,

with arbitrary link speeds.

The program to be distributed across the processors is
considered to be made up of a number of modules. A module is
considered to be a portion of a program that can, in general,
execute on any processor and could, for example, be a subroutine
or coroutine. There are assumed to be m-modules in the distributed

program.

For each module we have the cost of executing it
on each of the n-processors. The cost of executing module i on
processor j is denoted eij and equals the sum of the costs of
the various periods of eiecution of the module throughout the
lifetime of the program (since, fdr example, a subroutine is

typically executed several times during a - program run).

The eij's for an m module n processor problem
from an mxnp matrix. Since the processors are dissimilar, the cost
of executing a module varies from processor to processor, that is -
eij # ek’ in general. A module may be constrained to reside

on a subset of available processors (perhaps on only one processor)

by making its execution costs on the complementary subset infinite.

Modules will transfer control to each other at various points
during the lifetime of the program. If we draw up a directed
graph in which each node represents a module and in which there
is an edge from node i to node j if and only if module i calls
module j during program execution, this would be a calls graph.
The algorithm for optimal assignments that will be presented in
this section assumes that the calls graph of the program is a

tree. We will call this an invocation tree because it describes

the way modules invoke other modules during the execution of the

program. Fig. 1 shows an invocation tree made up of 8 modules.

Should a module invoke another module that is not
coresident with it, this invocation would have to be transmitted
over a communication link and thus incur interprocessor
communication cost. This is dependent on the amount of data
transmitted from one module to the other and the cost per bit
of transmission between the two processors on which the modules

are resident.

We will denote by dij the toial amount of data
transmitted between the calling module i and the called module
j during the lifetime of the program. The cost of transmitting
an amount of data dij between processors p and q is given by a
function S {d..). 1In its simplest form this function is

~Pq 1]

Spq(dij) = qu'dij where Soq is the cost of transmitting a unit

amount of data between processors p and q.
We assume the communication cost function to be
symmetric, i.e. Spq = qu.. This assumption permits us to

associate the sum of all data flow between modules i and j

{(whether from i to j or j to i) with the direction i to j. Although

Fig. 1 An Invocation Tree

we sce no motivation for considering the case Spq # qu,
the algorithm described below can easily be modified to handle

this case (for which separate dij’s and dji.s will be required.)

The cost of invoking a coresident module is assumed
to be zero, i.e. Spp=0. Should this assumption not be valid,
it too can be relaxed to account for non-negligible

intraprocessor communication costs.

The graph corresponding to the matrix of dij's

represents the invocation tree of a modular program.

2.2. Minimum cost assignment across space

We now show how the minimum cost assignment for our
modular program may be found. Such an assignment minimizes
the sum of execution costs and interprocessor communication

costs.

Given the invocation tree of a modular program, and
the execution and interprocessor communication costs, we may

draw up an assignment graph. Fig.2 shows the assignment

graph for the invocation tree of Fig.l and a 3-processor system.
The following definitions apply to this assignment
graph.

1) The assignment graph is a directed graph with weighted edges.

2) There is one distinguished node called the source node,
denoted s.

3) There are several terminal nodes t t

1 one for each
leaf node of the invocation tree. '

2.‘-.-'

4) n In addition to the source and terminal nodes there are
m x n further nodes in the assignment graph (for a problem
involving m modules and n processors). Each node is
labelled with a pair of numbers (i,j) and represents the
assignment of module i to processor j.

5) Each layer of the assignment graph corresponds to a
node of the invocation tree. For example the layer
comprising nodes (2,1), (2,2) and (2,3) corresponds to
node 2 of the invocation. tree.

6) Nodes in layers corresponding to nodes in the invocation
tree having outdegree greater than 1 are called forknodes.
Each layer of forknodes is called a forkset.

The edges have weights on them accoring to the

following rules

t., etc have

7) All edges incident on the terminal nodes tl, 2

zero weight on them.

8) Edges joining sourcenode S to nodes (1,1), (1,2)... have
weights €117 €197+

9) The edge joining node (i,p) to node (j,q) has weight
ejq+qu(dij)' For example, the weight on the edge joining
node (1,3) to (2,1) is e l+S13 (d 2). This equals the cost
of assigning module 2 to“procéssor”1l, given that module 1 has

been assigned to processor 3.

It follows from property 3 above that to each
assignment of the m modules to the n processors there corresponds
some subset of nodes of the assignment graph. The subgraph
generated by these nodes plus the source and terminal nodes

is called an assignment tree and has the following properties.

l) It is a tree

2) It connects the source node s to all terminal nodes
tl' t2,...

3) It contains one and only one node from each layer of
the assignment graph.

There is a one to one corresgpondence between assignment
trees and module aséignments. Furthermore the weight of each
assignment tree (i.e. the sum of the weights of all edges
in it) equals the cost of the corresponding assignment. This
follows from property 9 of assignment graphs. The thick edge
in Fig.2 represent an assignment tree which is shown in

isolation in Fig.3.

-~

Fig. 2 An Assignment Graph for the invocation tree of Fig. 1 and a
3-processoxr System.

Fig. 3 The Assignment Tree from Fig. 2
shown in isolation with edges
labelled.

To find a minimum cost assignment we need to find
the minimum weight assignment tree in the assignment graph. This
may be done using the dynamic programming approach described

in the Appendix in 0(m2n2) time.

3. Distribution across space and time

3.1 Motivations

In this section we discuss how a set of tasks that
must be executed according to a tree-like precedence relationship
may be optimally scheduled over a distributed processor system

in which costs vary with time.

The computational resources of many organizations
are in the form of a distributed computer network with each
computer servicing one or more high priority local tasks and
retaining the capability of servicing remotely submitted tasks
at a low priority. In a productien environment, the loads on

the computers are fairly predictable as they depend heavily on

the specific local loads on the machines.

In such an environment we would be interested in
disﬁributing a large set of tasks over the system such that it
utilizes whatever processors are lightly loaded. Since the
loads on the processors are time dependent, we may wish to
consider suspending some tasks until a time when the load on a
particular processor is very light. Of course, some tasks may
be time critical and not admit any such suspension. Our
problem thus becomes one of distributing a set of tasks over a
set of processors, taking into account the run cost of each
task on each processor (which will,‘in general, be time-dependent),

the intercommunication costs between pairs of tasks {which

will depend on the pairs of processors on which the two tasks are
executed and may also be time dependent) and the penalties for
not meeting deadlines for taks (which may be set to infinity if a

task must be executed by a certain time).

As a concrete example of a situation where such
scheduling may be useful, consider the setting up of an appointment
for a student to see a specific doctor at a Uniﬁersity Infirmary.
This task is to be run at the University's central administrative
computing center {which is made up of one or more time-shared
machines). The task involves the updating of a specific doctor's
appointment file, the scheduling of an examination room, mailing
a reminder to the student, undating the student's account file etc.
Some tasks (e.g. updating the doctor's appointment file) must be

done immediately, while others (updating the student's account)

may be deferred until a later time.

In an airlines reservation computer system, the prime
objective is to provide fast reliable service to the numerous
ticketing terminals. However there.is no reason why such a
system cannot be used for other functions as well. Tasks other
than ticketing need to be scheduled over this system so as to

minimally impact the efficiency of ticketing by deferring as

much as possible such tasks to off peak load hours.

Another example is where a long engineering computation
(comprising several steps to be executed in a sequence) is to be
carried out at a large computation laboratory with several
computers, some of which are used for real time simulation
during the day. An engineer carrying out such a calculation

will often do the initial data preparation during the day and

then suspend his task until night time when it may be run at
very low cost on a lightly loaded machine. The final interactive

examination of the results is done on the following day.

The complex of computers at NASA Langley Research
Center is an example of this kind of environment. There are at
this center several CDC Cyber machines with varying computational
power but capable of executing essentially the same instruction
set. Some powerful machines are completely dedicated to real time
simulation during the day but may be used at lower cost during

the evenings and at night.

3.2 Formulation of the problem.

We assume there to be n processors in our distributead
system. The costs of executing tasks on processors vary with
time but remain constant over specified periods of time called
phases. This is illustrated in Fig.4 where the vertical axis
represents the space of processor and the horizontal axis
represents time. During some phases a processor may be totally

unavailable because of complete dedication to a real-time task

or perhaps because of scheduled maintenance.

Once a task starts executing during a particular phase,
it is allowed to run to completion even if the phase ends during
task execution. The time to execute a task is considered to be
small compared to the length of a phase. A task that is
initiated near the end of a phase is treated like a customer
who arrives at a bank just before closing time--he is allowed

to complete his transaction even though closing time is past.

The graph superimposed on Fig.4 shows one possible

way of scheduling a precedence tree of tasks over the two

INiL

§ 3SVHd

pue

swWTL

ooedg IoA0 9911 ©OUSpPeORId B HUTINPAYDS

7 3SVHJ

T 3SVHd

y bia

L 3SVHd

H/

AN VIUVAVYNN

\B

1 8055300¥d

2 ¥0553204d

e e

37GVUVAVYND

£ ¥0SS320yd

L3 |

and its s

Fig. 5 A prec

Lz]

cheduling graph
problem.

two phase

edence
a two

for

10
dimensions of space (processors) and time (Phases).

In the usual fashion, each node of the precedence
tree represents a task and a directed edge from node i to node j

implies that task i must be completed before task j is started.

With each node i is associated eijk’ the cost of =
executing task i on processor j during phase k. This cost will,
in general vary across the processors and phases. It may be set
to infinity for some processors during certain phases if these

processors are not available during these specific phases.

Also associated with each node i is Eik the penalty
’

for not completing task i by the end of phase k. This penalty Fik

may be set to infinity if the task must finish by phase k.

With the edge connecting nodes i & Jj in the precedence
tree, we have dij - the amount of data that must be transmitted
between tasks when invoking task j at the end of task i. The
overhead of invoking task j in phase ¢w on processor py after
completing task i in phase ¢V on processor p. is a function

T(dij' P, py,¢v, ¢w). This function can take into account (i) the

X
amount of data transmitted (ii) the cost per bit of the link between
P, and py and (iii)the overhead of suspending a task when it
finishes in ¢v and resumes in ¢w. A simple function, which

ignores (iii) above is T=sxy°dij where Sxy is the cost of

transmitting a unit of data between processors P, and py.
3.3. Solution

The precedence tree of tasks may be scheduled to minimize
the sum of execution costs, interprocessor communication costs,
penalties for not meeting deadlines and costs of suspending and

resuming tasks. The solution techniques are very similar to the

11
optimal assignment approach of section 2.

Fig. 5. shows a scheduling graph that has m.n.g nodes for a
problem based on m modules, n processors and ¢ phases. This
is a weighted directed graph (Fig.5 omits the arrow heads on
the edges for clarity - there is no ambiguity of direction
since all edges consistently point away from node s.) This

graph is drawn up according to the following rules.

1) Node (i,j,k) represents the execution of task i on processor
j during phase k.

2) Edges joining node s to nodes 111,121, 112 etc. have weights
€111,%121, ©112 ©tc

3) Edges incident on nodes tl, t2.. have weight zero.

4) There is an edge joining node (i, Py ¢) to node (j, py ¢w)
node i precedes node 3 in the precedence tree and if ¢,}¢

if

5) The weight on the edge described above is
+T(d‘-,p,p,¢,¢)+F
8 30x Yy v 31y 1. The first term
takes into account the cost of execution, the second term
is the interprocessor and interphase communication
overhead. The last term represents the penalty for not
completing this task by the end of the previous phase.

The similarity between this scheduling graph and
the assignment graph of the previous section is obvious. In
fact the scheduling graph may be considered to be ap assignment
graph based on m modules and n.g processors. Thus the 'shortest
tree in the scheduling graph, which would correspond to the
optimal schedule, may be found using the algorithm described

in the appendix in O(m2n2¢2)t1me

12

4. Conclusions

A dynamic programming algorithm has been presented
that may be used (1) to optimally assign a modular programme
that has a tree-like structure over a distributed processor
system and (2) to optimally schedule a set of tasks that have
a tree-like precedence relationship over a distributed
processor system in which costs vary with time but are constant

over contiguous periods called phases.

For the first case the algorithm has 0(m2n2) time
complexity where m is the number of modules and n the number of
processors. We have thus shown the unsolved problem of optimally
assigning a modular prograin ovei more than three procsssars +o bhe
solvable for the important class of programs in which the

module interconnection structure 1is a tree.

In the second case the algorithum has O(mznzﬂz)

complexity whexe @ is the number of phases.

S. Acknowledgements

.

The author wishes to thank Professor Harold Stone for
his unceasing encouragement of this research. Comments of
the referees on an earlier version of this paper have

significantly helped to reshape it.

13

6. References

Bokhari (79) S. H. Bokhari, "Dual Processor Scheduling with Dynamic
Reassignment," IEEE Trans. Software Eng., vol. SE-5, no.4,
pp. 341-349, July 1979.

Bokhari (80) S. H. Bokhari, "Optimal Assignments in Dual Processor
Distributed Systems under varying load conditions,”
IEEE Trans. Software Eng., to appear.

Gursky (78) M. Gursky, private communication.

Michel & van Dam (76) J. Michel and A. van Dam, "Experience with
distributed processing on a Host/Satellite Graphics
System," Proceedings of SIGGRAPH '76, available as
Computer Graphics, (SIGGRAPH newsletter), vol. 10, no. 2,
1976. '

Stone (77a) H. S. Stone, "Multiprocessor Scheduling with the aid
of Network Flow Algorithms," IEEE Trans. Software Eng.,
vol. SE-3, no. 1, pp. 85-93, Jan 1977.

Stone (77b) H. S. Stone, "Program Assignment in Three-Processor
: Systems’' and Tricutset Partitioning of Graphs," Tech.
Rep. no. ECE-CS-77-7, Dept. Elec & Computer Eng.,
Univ. of Massachusetts, Amherst.

Stone (78) H. S. Stone, "Critical Load Factors in Distributed
Systems," IEEE Trans Software Eng., vol. SE-4, no. 3,
pp. 254-258, May 1978.

Turner (380) J. Turner, "The Structure of Modular Programs,"
CACM, vol. 23, no. 5, pp. 272-277, May 1980.

van Dam et al. A. van Dam, G. Stabler & R Harrington, "Intelligent
Satellites for interactive graphics," Proc. of the
IEEE, ¥ol. 62, no. 4, pp. 83-92, April 1974.

14

6. Appendix: The shortest tree algorithm

An algorithm to find the shortest assignment tree
in an assignment graph is presented in this section. At the
heart of the algorithm is a procedure that will find the
shortest paths trom a terminal node of the assignment graph to
all nodes in the nearest forkset (Fig.6). This may be done
using dyramic programming in O(mnz) time (From each node in a
layer we label all nodes in the preceeding layer--this takes
0(n2) time. This labelling is repeated 0(m) times). Let us
call this procedure SHORT and assume thaﬁ it leaves pointers
from each node to the next node in the shortest path to the

+terminal node.

We will call a forkset "exposed" when the shortest

path from its nodes to all possible terminal nodes have been found.

Fig 6 Shortest baths from t, and t, to all
nodes in the forkset.

15

begin
input graph;

(* TSET is the set of all terminal nodes *)
(* FSET is the set of all forksets *)

while |rseT| > 1 do
begin

to each terminal node t in TSET apply procedure
SHORT and remove t from TSET;

for each exposed forkset f in FSET do
begin
temporarily disconnect all outgoing edges;

create a pseudo-terminal node tf;

join all nodes in f to te with edges that
have uelg‘pts nqual to the sum of the
several shortest paths tothe several
discarded terminal nodes;

remove f from FSET;

add t_. to TSET;

£

end;
end;

find the shortest path from the last terminal node to s;
(* the length of this path equals the weight of the shortest tree

reconnect all disconnected edges;

traverse graph from s to all terminal nodes by following
pointers set up by procedure short; (* each node encountered
is part of the shortest tree *)

end.

*)

16

Fig.6 shows an assignment graph just after the application of

procedure SHORT to terminal nodes t, and t.,. In Fig.7 we

1 2
have temporarily removed the two limbs of the graph and

created a pseudo-terminal node ts The weight on the edge
joining ts to a node in the forkset equals the sum of the

shortest paths from that node to t, and t, from Fig.6. After

1 2
finding the shortest path from s to to we reconnect the two

limbs of the graph to obtain the shortest tree as shown in Fig.8.

This algorithm is applicable to abitrary assignment
graphs. Each application of procedure SHORT takes 0(mn2)

time. The total number of times this procedure is applied

cannot exceed m, the number of layers in the graph. The overall

complexity of the algorithm is thus O(m2n2).

Fig. 7 Transformed graph with shortest path
from pseudo terminal node to to s.

Fig. 8 The shortest assignment tree.

